3x^2+20x-1600=0

Simple and best practice solution for 3x^2+20x-1600=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+20x-1600=0 equation:



3x^2+20x-1600=0
a = 3; b = 20; c = -1600;
Δ = b2-4ac
Δ = 202-4·3·(-1600)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{19600}=140$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-140}{2*3}=\frac{-160}{6} =-26+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+140}{2*3}=\frac{120}{6} =20 $

See similar equations:

| 2^4x-5=8 | | x/12=x/6+2/3 | | 144v^2-12=157 | | 0.4*0.3=x | | 0.4·0.3=x | | -4/7b=-28 | | c=180-22-45 | | x=0.4·0.3 | | 3x+112+5x+100=360 | | 2x-14=+15 | | 3(k-5)=-10 | | 1/2w+9=2w | | x2+15x+44=0 | | ((1.28+.8x)/1.28)+((3.36+.1x)/3.36)=1 | | b2=-35+12b | | 5b-2b=-34 | | (1.28+.8x)/1.28=1 | | 5(x+1.5)=71.25 | | 2n2+4n-16=0 | | 2(10+9v)=28 | | (1.28+.8x)/1.28=0 | | 12-5(3-2x)=8x-3(x+1) | | 2n+4n-16=0 | | 2x=1/2x^2-3x+14(2/3) | | b/0.2=20 | | 18y+5=25 | | -3w+9=3(w+9) | | 2x=1/2x^2-3x+142/3 | | 7x-20=41 | | x-4(x+1)=6 | | x+2/5=-1/6 | | -4v=-6−4v |

Equations solver categories